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Energetics of polycrystals
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The energetics of polycrystalline solids at high temperatures is treated using topological
methods. The theory developed represents individual irregular polyhedral grains as a set of
symmetrical abstract geometric objects called average N-hedra (ANH’s), where N, the
topological class, equals the number of contacting neighbor grains in the polycrystal.
ANH’s satisfy network topological averages in three-dimensions for the dihedral angles and
quadrajunction vertex angles, and, most importantly, can act as “proxies” for irregular
grains of equivalent topology. The present analysis describes the energetics of grains
represented as ANH’s as a function of their topological class. This approach provides a
quantitative basis for constructing more accurate models of three-dimensional
well-annealed polycrystals governed by capillarity. Rigorous mathematical relations,
derived elsewhere, for the curvatures, areas, and volumes of ANH’s yields quantitative
predictions for the excess free energy. Agreement is found between the analytic results and
recently published computer simulations. C© 2005 Springer Science + Business Media, Inc.

1. Background and introduction
The energetics and growth kinetics of polycrystals at
high temperatures are important topics regarding mi-
crostructure evolution in the solid state. The founda-
tion for understanding grain growth in two dimen-
sions was established about 50 years ago by Smith [1],
von Neumann [2], and by Mullins [3]. von Neumann
proved that a network of two-dimensional grains or bub-
bles exhibiting uniform mobility, M , and boundary en-
ergies, γgb, obeys a simple kinetic law:

da

dt
= πγgb M

3
(n − 6), n ≥ 2, (1)

where a is the area of a grain in two dimensions (R2)
with n sides or vertices. The von Neumann-Mullins re-
lationship, Equation 1, also referred to as the “n − 6
rule”, is the growth law for isotropic two-dimensional
polycrystals dominated by capillarity. It provides an ex-
cellent approximation for the behavior of grains form-
ing networks in thin films, or, in general, to situa-
tions where one spatial dimension of the polycrystal
is suppressed relative to the others [4–7]. It is interest-
ing that the “n − 6” rule was also known empirically
to experimentalists [8, 9] before its mathematical ba-
sis was established by the distinguished mathematician
von Neumann.

The related excess free energy of a 2-d polycrystal
(relative to a single crystal of equivalent area), �G2,
is given by the sum of all the edge energies over the
polygonal grain perimeters, Pi,

�G2 = γ

2

∑

i

Pi, (2)

where the edge energy, γ , is considered only as a func-
tion of the temperature. The factor of 1/2 in Equation 2
accounts for the fact that the summation over the 2-d
network redundantly counts the grain boundaries twice.
Graner et al. [10] showed that the total perimeter of a
two-dimensional polycrystal may be written in terms of
its grain areas, Ai, by applying the metric relationship
that Pi ≈ √

Ai, and thus Equation 2 becomes

�G2 = γ

2

∑

i

e(ni)
√

Ai, (3)

where the coefficients of proportionality e(ni) ≡
Pi/

√
Ai. Graner et al. [10] then analyzed the geomet-

rical relationship between the total perimeter and area
for regular two-dimensional idealized grains consisting
of ni identical curved sides meeting pairwise at 120◦.
Graner et al. found that the proportionality coefficients,
e(n), appearing in Equation 3 varied weakly with the
number of sides, n. Specifically, Graner et al. showed
that over the entire range of n-values, i.e., 2 ≤ n ≤ ∞,
the function e(n) varied from a maximum value of
e(2) ≈ 3.78 to a minimum of e(n → ∞) ≈ 3.71. Thus,
the energy coefficients for 2-d polycrystals changes
less than 2% for any value of n. Euler proved that a
sufficiently large space-filling polygonal tessellation in
R

2 [4] has an average number of sides per cell, 〈n〉 that
approaches 6, and so Equation 3 relates the total free
energy of a large network of two-dimensional grains to
its total grain area

�E2 = γgb

2
e(6)

∑

i

√
Ai. (4)

Later, Vaz and Fortes [11] confirmed that Equation 4
provides an accurate estimate for the excess free energy
of two-dimensional foams.
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The structure and energetics of three-dimensional
polycrystals, however, remains under theoretical study
[12–17], computer simulation [18–23] and experiment
[24, 25]. This paper reports on extending the free energy
analysis of polycrystals to three-dimensions. Polycrys-
tals in three dimensions are modeled as an idealized
network consisting of “average N -hedra,” which are
objects that may be used to estimate the excess free en-
ergy of annealed grains in R

3, by direct analogy with
Graner et al.’s result in R

2.

2. Geometry of interfaces
Consider the coordinate patch for a small portion of
a grain boundary in R

3 as is sketched in Fig. 1. The
patch mathematically represents a small area on a dif-
ferentiable surface or interface. The geometry of such
smooth surface elements is given by its local shape ma-
trix [26, 27]

κij =
[
κ1 0

0 κ2

]
, (5)

where κ1 and κ2 are the principal curvatures at the point
in question. The principal curvatures, κ1 and κ2 are the
reciprocals of the two principal (maximum and min-
imum) radii of curvature, R1 and R2, as sketched in
Fig. 1.

Two independent scalar invariants may be derived
from the matrix, Equation 5. The first represents the
mean curvature, H , defined as one-half the trace of the
shape matrix, [27],

H ≡ 1

2
Tr

[
κ1 0

0 κ2

]
= 1

2
(κ1 + κ2), (6)

whereas the second represents the Gaussian curvature,
K , defined as the determinant of Equation 5,

K ≡ Det

[
κ1 0

0 κ2

]
= κ1κ2. (7)

The two curvatures characterize the local geometry of
an interface over a sufficiently small and uniform area.
Note that H and K have different physical units and
represent independent aspects of the local geometry.
Specifically, the mean curvature, H , relates changes of
area, A, to the volume, V , swept by the surface moving

Figure 1 Coordinate patch of a curved interface. The local surface nor-
mal, N and the pair of tangent vectors Tu and Tv define local surface
coordinates, (u, v), that specify the principal radii of curvature, R1 and
R2.

through its surrounding space, R
3. The mean curvature

also equals the differential coefficient relating this area
and “swept” volume,

H = 1

2

δA

δV
. (8)

The Gaussian curvature, by contrast, provides a geo-
metric property that relates to the topological, or in-
trinsic properties of surfaces. Specifically, the Gaus-
sian curvature, K , equals the change in the “spheri-
cal image” projected by a surface, as measured by its
subtended solid angle, �, with the change in its area,
A. Thus, the Gaussian curvature equals the differential
coefficient

K = d�

dA
. (9)

As such, the total integral of the Gaussian curvature
over the surface enclosing any smooth, closed object
in R

3 equals 4π steradians. Thus, for any sufficiently
smooth closed object in R

3, independent of its overall
shape, it holds that

∫∫
K dA = 4π. (10)

Equation 10 provides a convenient starting point for an-
alyzing the properties of grains in a space-filling poly-
crystal. For the specific case of an equicurved spherical
interface, such as a curved grain surface, it also may be
shown [28] that H and K are related as

K = H 2. (11)

3. Polycrystalline grains
3.1. Irregular polyhedra
Three-dimensional polycrystals, after annealing at high
temperature to remove plastic strain, consist of polydis-
perse space-filling irregular polyhedra. Irregular poly-
hedral grains consist of a variable number,N , of curved
faces. The faces themselves may comprise a variety
of shapes from triangular, quadrilateral, pentagonal,
hexagonal, etc. As mentioned, the topological rules ap-
propriate to networks in R

3 demand that an individual
grain face with p unequal edges (p = 3, 4, 5, . . .) inter-
sects with each of its p neighboring faces on the grain
and with one additional face on a neighboring grain to
establish a total of 3(N −2) edges, which are the triple-
lines of the polycrystal. Thus, any grain in an annealed
polycrystal with N faces (N ≥ 3) obeys the rule that
its average number of edges per face, 〈p〉, is given by
the topological equation [1]

〈p〉 = 1

N
N∑

i=1

pi = 6

(
1 − 2

N

)
. (12)

In addition, annealed irregular grains exhibit trihedral
vertices, where the grain’s edges intersect three at a
time. The total number of trihedral vertices on any ir-
regular grain with N faces is therefore exactly 2/3 the
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Figure 2 A network polyhedron typical of grains found within an an-
nealed three-dimensional polycrystal. Polyhedral grains that fill space
are irregular, exhibiting N “mixed” faces (N ≥ 4) each consisting of p
edges (p = 3, 4, 5, 6 . . .) of different lengths, intersecting three at a time
to form an even number (2(N − 2)) of trihedral vertices. The surface
properties, such as the mean and Gaussian curvatures, are discontinuous
at edges and vertices.

total number of edges, or 2(N − 2). Fig. 2 provides an
illustration of a typical (isolated) irregular polyhedral
grain showing the relationships among its faces, edges,
and vertices. Note, however, that polyhedral grains are
not merely smooth bodies: they exhibit singular ver-
tices and edges where the grain boundary curvatures,
H and K , appear to be discontinuous.

3.2. Average N-hedra
3.2.1. General
In order to analyze the free energy of three-dimensional
polycrystals we now describe the features of a set of ge-
ometrical objects termed “averageN -hedra” or ANH’s.
ANH’s, although not capable of being constructed or
filling space in a 3-d network, nonetheless represent
a geometrical generalization, valid for 3 ≤ N ≤ ∞,
of the geometrical and topological properties of ordi-
nary, i.e., constructible, space-filling, irregular polyhe-
dra. ANH’s, by contrast with irregular polyhedra, have
N identical curved faces that intersect at precisely 120◦
along 3(N −2) identical edges. The edges meet three at
a time at 2(N − 2) identical trihedral vertices. All ver-
tices are equidistant from the volume centroid of each
ANH. Only four constructible examples of ANH’s ex-
ist that can be used as proxies for irregular network
polyhedra [22]: including the cases N = 3, 4, 6, and
12. See examples displayed in Fig. 3.

The “constructibility” of the five ANH’s portrayed
in Fig. 3 depends on the rather obvious fact that the
number of sides per face, which also equals the average
number of sides per face, p̄, is an integer (1, 2, 3, 4,
or 5). Of course, in general, p̄ is not an integer, and
irregular network polyhedra, such as shown in Fig. 3
often consist of individual faces with a mixed (integer)
values of edges (that individually can exceed 6) but
overall have a non-integer average number of edges per
face, p̄ ≤ 6. Nevertheless, topology requires that the
average number of sides per face on any polyhedron is
always equal to

p̄ = 6 − 12

N , (N = 3, 4, 5 . . . ∞) (13)

Unless p̄ itself is an integer between 1 and 5, how-
ever, the ANH is not “constructible”, at least in the

Figure 3 The top row displays constructible ANH’s for N = 2, 3, and
4, and the second row (left and middle) displays the remaining two con-
structible ANH’s, N = 6, and 12. Note that the ANH, N = 2 is not
useful as a network proxy, insofar as it lacks trihedral vertices, which are
required at the quadrajunctions of a 3-d grain network. The last object on
the second row is Kelvin’s “tetrakaidecahedron”—a space-filling poly-
hedron consisting of mixed face shapes (squares and hexagons), which
therefore fails to qualify as an ANH. The theory used here shows that the
five constructible ANH’s displayed here have an infinite set of abstract
(non-constructible) counterparts for every other integer value of N . The
high symmetry of the infinite set of ANH’s permits their use as “prox-
ies” for estimating the properties of irregular polyhedra of equivalent
topological class.

ordinary sense of capable of being built or sketched
as a physical object in R

3. Thus we find that other
ANH’s, excepting the five cases for which p̄ is an
integer, have non-integer p̄-values, making them all
non-constructible geometrical abstractions. As will
be shown, however, ANH’s can still usefully serve
as accurate “proxies” for irregular polyhedral grains,
providing they have the same number of faces, N .
Again, grains in real polycrystals consist of space-
filling irregular polyhedra, exhibiting curved faces
that vary in shape (triangles, quadrilaterals, pentagons,
hexagons, etc.), and are bounded by sides of varied
lengths.

The connection we shall show between irregular
grains and their ANH counterparts is that they have
identical topological properties, but the latter are eas-
ily analyzed regarding their geometric and energetic
properties.

4. Space filling in R
3

4.1. Gauss-Bonnet theorem
Polyhedra enclosed by piecewise bounded surfaces
obey a fundamental topological sum rule known as
the Gauss-Bonnet theorem [26, 27]. The Gauss-Bonnet
theorem provides the starting point for the topological
description of all objects occupying a volume in R

3.
Specifically, if an isolated object is covered at every
point on its surface by a unit normal, n, and if a trans-
formation of these normals is applied that maps the
normals to the center of a unit sphere, then the infinite
set of normals will exactly cover its total surface area
of �tot = 4π , thereby filling every possible orientation.
Moreover, this result is independent of the shape of the
body, and provides a basic topological property of all
objects existing in R

3.
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4.2. Components of the spherical
image, �tot

The spherical image of any isolated polyhedral body
derives from the sum of contributions devolving from
its smooth faces, and from all the discontinuities at the
polyhedron’s curved edges and vertices. One can calcu-
late exactly these contributions for the ANH’s because
of their ideal symmetry as follows:

1. N curved faces: �face = ∫∫
faces K dA.

2. 3(N − 2) edges. �edge = 3(N − 2)ω.
3. 2(N − 2) vertices. �vertex = 2(N − 2)�0.

The total spherical image, �tot, of an ANH is the sum
of the contributions itemized above, and thus

�tot =
∫∫

faces
K dA + 3(N − 2)ω + 2(N − 2)�0 = 4π.

(14)

The contributions to the spherical image from the
curved symmetrical edges are proportional to the prod-
uct of the planar turning angles, ω, between adjacent
vertices, and to twice the cosine of the exterior dihedral
angle across each edge, the latter of which is just a con-
stant equal to 1 in all cases, because 2 cos(π/3) = 1.
The turning angle between vertices, ω, which does vary
with N , may be determined by elementary methods
from the symmetry properties of the average N -hedra
as

ω = π + 2 arctan

(
sin

α

2
tan

π

p̄

)
− 2 arccos

(
− 1

3

)
,

(15)

where α is the exterior angle between the face normals
located at the geometric center of adjacent faces on the
averageN -hedron. This angle is the following function
of N ,

α = 4 arctan

√

1 − 2sec

(
π

2 (N − 2)

)
cos

π (2N − 3)

6 (N − 2)

(N ≥ 4). (16)

Polycrystals always have three grains meeting along
each triple line. The average interior dihedral angle av-
eraged over the network is therefore 2π/3. An aver-
age dihedral angle of 2π/3 is consistent with a quadra-
junction, where four grains touch, having meeting an-
gles between edges that are equal on average to the
tetrahedral angle, arccos(− 1

3 ) ≈ 109.47◦. Finally, it
may be shown that each equilibrium vertex on any
network polyhedron contributes a fixed amount to the
spherical image, �0, given by an expression derived by
DeHoff [29],

�0 = 2π − 3 arccos

(
− 1

3

)
= 0.551287 . . . (17)

5. Energetics of 3-d polycrystals
The excess free energy of an isotropic polycrystal in
three dimensions is given by the sum of the areas of its
grain faces,

�Epoly = γgb

2

∑

i

Ai(N ). (18)

Recently, Cox and Fortes [22] showed by computer
simulations that a method similar to that used by
Graner et al. [10] for determining the free energy of
a 2-d isotropic polycrystal (See again Section 1—
Background and Introduction) also exists for three
dimensions. Specifically, Cox and Fortes showed that
the analog of Equation 3 in R

3 is

�Epoly = γgb

2

∑

i

ei(N )V
2
3

i , (19)

where the coefficients e(N ) = A/V 2/3 are scale-
independent metric ratios of the area and volume of
each grain. Equation 19 is easily evaluated employing
elementary expressions derived elsewhere for the ex-
act areas, volumes, and radii of curvature for the set of
ANH’s [30, 31]. Indeed, as shown in Fig. 4, e(N ) also
varies weakly with N , as shown by direct simulation
in [22]. Fig. (4) provides a comparison of the analytic
results obtained from Equation 19 for ANH’s over the
range of N -values reported by Cox and Fortes for a
few regular polyhedra, using simulations with Brakke’s
surface evolver [18, 19], and by Cox [23] for many
irregular polyhedra. The values for e(N ) determined
analytically for ANH’s agree well with the simulated

Figure 4 Comparison of computer simulations [22] with the present

analysis of the dimensionless surface area, e(N ) = A(N )/V
2
3 . This

scale-independent ratio is proportional to the excess free energy of three-
dimensional polyhedra. The surface area ratio e(N ) varies withN within
a very narrow range of values. The square symbols are data from com-
puter simulations of the four constructible average ANH’s (N = 3, 4, 6
and 12). The crosses are more recent data contributed by S. Cox [23] for
other irregular constructible polyhedra. Even these data exhibit values
no more than ≈ 0.1% larger than those for the corresponding ANH as
determined with the present theory.
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values, especially for those four cases (N = 3, 4, 6,

and 12), where the constructible polyhedra used in the
simulations are ANH’s. Where these polyhedra are ir-
regular, they still exhibit scaled areas (A/V

2
3 ) that are

within about 0.1% of the values for their representative
ANH’s. This strongly suggests that ANH’s can be used
to estimate accurately the free energy of an annealed
polycrystal.

DeHoff [29] and others [32] showed that the average
number of faces per grain in a three-dimensional poly-
crystal is between 13 and 14 (〈N 〉 ≈ 13.4). Of course
such an “average grain” does not exist, because it lacks
an integer number of faces. Nonetheless, the value of
the average proportionality constant between area and
volume, e(〈N 〉) ≈ 5.254, so the excess free energy of
a unit volume of a 3-d polycrystal may be written as the
sum over each grain, i ,

�Epoly ≈ 2.63 γgb

nv∑

i=1

V
2
3

i , (20)

where nv is the number of grains per unit volume in the
polycrystalline network. The quantity nv is easily mea-
sured in a polycrystal using standard metallographic
techniques and applying well-known stereological for-
mulas, [33, 34]. The average grain volume is defined
as

〈V 〉 = 1

nv
. (21)

Using the approximation that 〈V 〉 2
3 ≈ 〈V 2

3 〉, Equation
20 may be rewritten as

�Epoly = 2.63 γgb nv〈V 2
3 〉 ≈ 2.63 γgb nv〈V 〉 2

3 . (22)

Finally, combining the right-hand side of Equation 22
with Equation 21, yields an estimate for the excess
free energy per unit volume of an annealed polycrystal
solely in terms of the grain density, nv,

�Epoly = 2.63 γgb n
1
3
v . (23)

5.1. Free energy dissipation
If Equation 23 is differentiated with respect to time, one
obtains the rate of free energy dissipation for capillarity-
mediated grain growth in terms of the rate of grain
vanishings, which typically occur as some grains lose
faces and N → 4, and the grain rapidly shrinks to
extinction,

d�Epoly

dt
= β1 γgb n

− 2
3

v

dnv

dt
. (24)

Here, β1 ≈ 0.88. Equation 24 suggests that the rate of
grain vanishings within a polycrystalline network—a
topological process—also sets the rate of loss of excess
free energy.

By contrast, if Equation 20 is differentiated directly,
one obtains another expression for the rate of free en-

ergy dissipation based on grain volume changes be-
tween topological events, i.e., caused by the declining
total amount of grain boundary area induced at elevated
temperatures by capillary forces. Thus, we also find that

d�Epoly

dt
= β2 γgb

nv∑

i=1

V
− 1

3

i

dVi

dt
, (25)

where the coefficient β2 ≈ 1.75. Clearly, the time-
averaged rates of free energy dissipation given in
Equations 24 and 25 must be identical, it being inconse-
quential whether the dissipation is calculated from grain
vanishings and the declining grain number density, or
from the overall grain volume changes, which comprise
a collection of capillary-driven metrical processes lead-
ing to either volume increases (N ≥ 14) or volume de-
creases (N ≤ 13). This implies that topological events,
such as grain vanishings, and capillarity processes,
such as grain boundary motions, are eventually coupled
over time. This coupling permits the establishment of
a self-similar grain size distribution in well-annealed
polycrystals. Setting equal the right-hand sides of
Equations 24 and 25, and slightly rearranging terms,
leads to the final result which is a compatibility rela-
tionship between the rates of grain vanishings and the
overall time rate of scaled volume changes,

d

dt
n

1
3
v =

nv∑

i=1

d

dt
V

2
3

i . (26)

6. Conclusions
1. Average N -hedra (ANH’s) are used to represent

the topological properties and geometry of grains in a
three-dimensional polycrystal. ANH’s although neither
constructible nor space-filling, can act as “proxies” for
constructible irregular polyhedra that are space filling
in R

3.
2. The curvatures (both mean and Gaussian), total

face areas, and volumes may be found from exact el-
ementary formulas for all ANH’s. These formulas are
not provided here, but interested readers may find them
at [30, 31].

3. As suggested originally by Cox and Fortes [22]
the total energy of an isotropic polycrystal may be ex-
pressed through the dimensionless ratio of the grain
boundary area to the two-thirds power of the grain vol-
ume. This ratio was calculated using the exact geomet-
ric expressions given here, and compared to recently
published computer simulations in Fig. 4. Good agree-
ment is found between analytic theory and simulations.

4. Using the average number of faces per grain de-
rived by deHoff, namely that 〈N 〉 ≈ 13.397, the total
free energy of an isotropic polycrystal is found to be

�Epoly ≈ 2.63γgb
∑

i V
2
3

i .
5. The dissipation rate of the excess free energy

stored in the grain boundaries may used to determine
a compatibility relationship between network topolog-
ical processes, such as grain vanishing, which account
for grain growth, and the overall volumetric rates of
change of grains within individual topological classes
caused by capillarity.
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